
CROSSTALK The Journal of Defense Software Engineering 11February 1999

During the past few years, the
 COCOMO team at USC has
been working to update the

1981 version of the COCOMO estimat-
ing model (COCOMO 81) [1]. The
new version of the model, called
COCOMO II, builds on the experiences
that industrial affiliates of the USC
Center for Software Engineering have
had and addresses lifecycle processes and
paradigms that have become popular
since the original model was first intro-
duced in 1981. These new paradigms
include reuse-driven approaches, com-
mercial-off-the-shelf lifecycle develop-
ments, component-based software engi-
neering approaches, use of
object-oriented methods, and other
improvements to the way we do business
stimulated by process improvement
initiatives.

This article focuses attention on a
tool we have developed to permit our
users to update their original
COCOMO 81 files so that they can be
used with the COCOMO II model. We
call the tool the Rosetta Stone because it
is not unlike the black stone slab found
in Egypt by French troops in 1799. On
it were engraved three scripts (Greek,
Demotic, and hieroglyphics), which
enabled archaeologists to construct
translations among the three languages.
Our Rosetta Stone permits its users to
translate files prepared with the original
COCOMO 81 model to be compatible
with COCOMO II.

Many of our affiliates thought cre-
ation of the Rosetta Stone was important

because they had wanted to use the new
version of the model to take advantage
of its many advanced capabilities, in-
cluding the COCOMO II package’s
autocalibration features. However, they
could not make the move because they
had files that required older versions of
the model to run, e.g., COCOMO 81
and Ada-COCOMO. Others wanted to
calibrate the new version of the model
using their historical databases, but the
new version of the model had a new
structure, altered mathematics, and
different parameters and parametric
ratings. Under such circumstances, con-
verting files was no easy task.

The COCOMO II Estimating
Model
The major differences between
COCOMO 81 and COCOMO II, why
they are important, and cost driver defi-
nitions are summarized in Table 1. These
changes are important because they
reflect how the state of software engi-
neering technology has matured during
the past two decades. For example, pro-
grammers were submitting batch jobs
when the COCOMO 81 model was
first published. Turnaround time im-
pacted their productivity. Therefore, a
parameter TURN was used in the model
to reflect the average wait programmers
experienced before receiving their job
back. Such a parameter is no longer
important because most programmers
have instant access to computational
facilities through their workstations.

Therefore, the parameter has been re-
moved in the COCOMO II model.

The following summary highlights
the major changes made to the original
version of COCOMO 81 as
COCOMO II was developed.
• COCOMO II addresses the follow-

ing three phases of the spiral lifecycle:
applications development, early
design, and post-architecture.

• The three modes in the exponent are
replaced by five scale factors.

• The following cost drivers were
added to COCOMO II: DOCU,
RUSE, PVOL, PEXP, LTEX,
PCON, and SITE.

• The following cost drivers were de-
leted from the original COCOMO:
VIRT, TURN, VEXP, LEXP, and
MODP.

• The ratings for those cost drivers
retained in COCOMO II were al-
tered considerably to reflect more up-
to-date calibrations.

The Rosetta Stone
As illustrated in Table 2, users need to
convert factors in the COCOMO equa-
tions (such as the exponent, the size
estimate, and the ratings for the cost
drivers) from the original to the new
version of the model. We suggest that
users employ the following four steps to
make the conversion so original files can
be used with the COCOMO II model.

Update Size
The original COCOMO cost estimating
model used deliverable source lines of

The Rosetta Stone
Making COCOMO 81 Estimates Work with COCOMO II

Donald J. Reifer, Reifer Consultants, Inc.
Barry W. Boehm and Sunita Chulani, University of Southern California

As part of our efforts to help Constructive Cost Model (COCOMO) users, we, the COCOMO
research team at the Center for Software Engineering at the University of Southern California
(USC), have developed the Rosetta Stone to convert COCOMO 81 files to run using the new
COCOMO II software cost estimating model. The Rosetta Stone is extremely important because
it allows users to update estimates made with the earlier version of the model so that they can take
full advantage of the many new features incorporated into the COCOMO II package. This
article describes both the Rosetta Stone and guidelines to make the job of conversion easy.

12 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Engineering Technology

code (DSI) as its measure of the size of
the software job. DSI were originally
represented by card images, e.g., includes
all non-comment, nonblank carriage
returns. COCOMO II uses the follow-
ing three measures to bound the volume
of work associated with a software job:
source lines of code (SLOC), function

points (FPs), and object points. SLOCs
are counted using logical language state-
ments per Software Engineering Insti-
tute (SEI) guidelines [2], e.g., IF-
THEN-ELSE, ELSE IF is considered
one, not two, statements.

Table 2 provides guidelines to con-
vert size in DSI to SLOCs so that they

can be used with the COCOMO II
model. Whenever possible, we recom-
mend using counts for the actual size of
the file instead of the original estimate.
Such practices allow you to correlate
your actuals, e.g., the actual application
size with the effort required to do the
work associated with developing the
software.

The reduction in size for
COCOMO II estimates is attributable
to COCOMO 81’s need to convert card
images to SLOC counts. As already
noted, the pair IF-THEN-ELSE and
END IF would be counted as two card
images in COCOMO 81 and as a single
source instruction in COCOMO II.
The guidelines offered in Table 2 are
based on statistical averages to simplify
conversions; however, we encourage you
to use your actuals if you have them.

The following are two common
misconceptions about COCOMO’s use
of SLOC and FPs:
• Misconception 1: COCOMO does not

support the use of FPs – FP versions of
COCOMO have been available since
the Before You Leap commercial
COCOMO software package imple-
mentation in 1987. As noted in
Table 1, COCOMO II supports use
of either SLOC or FP metrics. In
both cases, this is done via “backfir-
ing” tables, which permit you to
convert FPs to SLOCs at different
levels.

• Misconception 2: Although it is irre-
sponsible to use SLOC as a general
productivity metric, it is not irrespon-
sible to use FP as a general sizing pa-
rameter for estimation – This miscon-
ception breaks down into the two
following cases.

• Your organization uses different
language levels to develop soft-
ware. In this case, it is irrespon-
sible to use SLOC as your pro-
ductivity metric, since you get
higher productivity per SLOC at
higher language levels; however,
it also is irresponsible to use FP
as a general sizing metric because
pure FP will generate the same
cost (or schedule or quality)
estimate for a program with the
same functionality developed

18OMOCOC IIOMOCOC

erutcurtSledoM htiwtratsuoysemussatahtledomelgniS
.erawtfosotdetacollastnemeriuqer

ssergorpuoyemussatahtsledomeerhT
ottnempolevedepyt-laripsahguorht
ehtyfidilos,stnemeriuqerruoyyfidilos

.ksirecuderdna,erutcetihcra

lacitamehtaM
troffEfomroF

noitauqE

c(A=troffE
i

)eziS() tnenopxE c(A=troffE
i

)eziS() tnenopxE

tnenopxE asadetcelestnatsnocdexiF=tnenopxE
.edomfonoitcnuf

50.1=cinagrO�
21.1=dehcatedimeS�

02.1=deddebmE�

nodesabdehsilbatseelbairaV=tnenopxE
.srotcafelacseviffognitar

� :CERP ssendetnedecerP
� :XELF ytilibixelFtnempoleveD
� :LSER noituloseRksiRroerutcetihcrA
� :MAET noisehoCmaeT
� :TAMP ytirutaMssecorP

eziS .)sPFrofsnoisnetxehtiw(COLS .sCOLSro,sPF,stnioptcejbO

c(srevirDtsoC i) detarebtsumhcihwfohcae,srevird51
� :YLER ytilibaileR
� :ATAD eziSesabataD
� :XLPC ytixelpmoC
� :EMIT tniartsnoCemiTnoitucexE
� :ROTS tniartsnoCegarotSniaM
� :TRIV ytilitaloVenihcaMlautriV
� :NRUT emiTdnuoranruT
� :PACA ytilibapaCtsylanA
� :PACP ytilibapaCremmargorP
� :PXEA ecneirepxEsnoitacilppA
� :PXEV ecneirepxEenihcaMlautriV
� :PXEL ecneirepxEegaugnaL
� :LOOT slooTerawtfoSfoesU
� :PDOM gnimmargorPnredoMfoesU

seuqinhceT
� :DECS eludehcSderiuqeR

detarebtsumhcihwfohcae,srevird71
� :YLER ytilibaileR
� :ATAD eziSesabataD
� :XLPC ytixelpmoC
� :ESUR ytilibasueRderiuqeR
� :UCOD noitatnemucoD
� :EMIT tniartsnoCemiTnoitucexE
� :ROTS tniartsnoCegarotSniaM
� :LOVP ytilitaloVmroftalP
� :PACA ytilibapaCtsylanA
� :PACP ytilibapaCremmargorP
� :PXEA ecneirepxEsnoitacilppA
� :PXEP ecneirepxEmroftalP
� :XETL ecneirepxElooTdnaegaugnaL
� :NOCP ytiunitnoClennosreP
� :LOOT slooTerawtfoSfoesU
� :ETIS tnempoleveDetisitluM
� :DECS eludehcSderiuqeR

ledoMrehtO
secnereffiD

nodesabledoM
.alumrofesuerraeniL�

elbatsylbanosaerfonoitpmussA�
.stnemeriuqer

gnidulcni,stnemecnahnerehtoynamsaH
.alumrofesuerraenilnoN�

troffetaskooltahtledomesueR�
.etalimissadnadnatsrednuotdedeen

otdesusgnitaregakaerB�
.ytilitalovstnemeriuqersserdda

.serutaefnoitarbilacotuA�

Table 1. Model comparisons.

CROSSTALK The Journal of Defense Software Engineering 13February 1999

using different language levels. This is clearly wrong. To
get responsible results in this case, FP-based estimation
models need to use some form of backfiring to account
for the difference in language level.

• Your organization always uses the same programming
language (level). Here, it is responsible to use pure FP
as your sizing metric for estimation. But it also is re-
sponsible to use SLOC as your productivity metric.
Both metrics work in practice.

Convert Exponent
Convert the original COCOMO 81 modes to scale factor
settings using the Rosetta Stone values in Table 3. Then, adjust
the ratings to reflect the actual situation. For example, the
Rosetta Stone rates process maturity (PMAT) low because
most projects using COCOMO 81 are assumed to have been
at Level 1 on the SEI process maturity scale [5]. However, the
project’s actual rating may have been higher and an adjustment
may be in order.

An exception is the PMAT scale factor, which replaces the
COCOMO 81 Modern Programming Practices (MODP)
multiplicative cost driver. As seen in Table 4, MODP ratings of
very low (VL) or low (L) translate into a PMAT rating of VL
or a low level on the Software Capability Maturity Model
scale. An MODP rating of normal (N) translates into a PMAT
rating of L or a high Level 1. An MODP rating of high (H) or

very high (VH) translates into a PMAT rating of N or CMM
Level 2. As with the other factors, if you know that the
project’s actual rating was different from the one provided by
the Rosetta Stone, use the actual value.

The movement from modes to scale factors represents a
major change in the model. To determine the economies and
diseconomies of scale, five factors have been introduced.
Because each of these factors can influence the power to
which size is raised in the COCOMO equation, they can
have a profound impact on cost and productivity. For ex-
ample, to increase the rating from H to VH in these param-
eters can introduce as much as a 6 percent swing in the re-
sulting resource estimate. Most of these factors are modern in
their derivation. For example, the concept of process matu-
rity was not in its formative stages when the original
COCOMO 81 model was published. In addition, the final
three factors, RESL, TEAM, and PMAT, show how an orga-
nization can exercise management control over its
diseconomies of scale. Finally, the first two, PREC and
FLEX, are the less controllable factors contributing to
COCOMO 81 modes or interactions.

Rate Cost Drivers
The trickiest part of the conversion is the cost drivers. Cost
drivers are parameters to which cost is sensitive. For example,
as with the scale factors, you would expect that use of experi-
enced staff would make a software development less expensive;
otherwise, why use them? Because the new version of the
model uses altered drivers, the Rosetta Stone conversion guide-
lines outlined in Table 4 are important. For those interested in
more details about the cost drivers, we suggest you refer to the
COCOMO II Model Definition Manual [6]. Again, the rat-
ings need to be adjusted to reflect what actually happened on
the project. For example, the original estimate may have as-
sumed that analyst capability was very high; however, the
caliber of analysts actually assigned might have been nominal
because key employees were not available to the project when
they were needed.

Users should take advantage of their knowledge of what
occurred on the project to make their estimates more reflective
of what really went on as the application was developed. Use of
such knowledge can improve the credibility and accuracy of
their estimates.

The TURN and TOOL rating scales have been affected by
technology changes since 1981. Today, virtually everyone uses
interactive workstations to develop software. TURN has there-
fore been dropped from COCOMO II and its calibration
assumes the TURN rating is L. Table 5 provides alternative
multipliers for other COCOMO 81 TURN ratings.

The tool suites available in the 1990s far exceed the
COCOMO 81 VH TOOL rating, and virtually no projects
operate at the COCOMO 81 VL or L TOOL levels.
COCOMO II has shifted the TOOL rating scale two levels
higher so that a COCOMO 81 N TOOL rating corresponds
to a VL COCOMO II TOOL rating. Figure 5 also provides a

Table 2. Converting size estimates.

srotcaFelacSdnaedoM cinagrO dehcatedimeS deddebmE

)CERP(ssendetnedecerP HX H L

ytilibixelFtnempoleveD
)XELF(

HX H L

ksiRdnaerutcetihcrA
)LSER(noituloseR

HX H L

)MAET(noisehoCmaeT HX HV N

)TAMP(ytirutaMssecorP L L L

Table 3. Model scale factor conversion ratings.

The Rosetta Stone: Making COCOMO 81 Estimates Work with COCOMO II

18OMOCOC IIOMOCOC

ISD
segaugnaLnoitareneG-dnoceS�

segaugnaLnoitareneG-drihT�
segaugnaLnoitareneG-htruoF�

segaugnaLdetneiro-tcejbO�

]3[COLS
.tnecrep53ybISDecudeR�
.tnecrep52ybISDecudeR�
.tnecrep04ybISDecudeR�
.tnecrep03ybISDecudeR�

stnioPnoitcnuF srepaCybdepolevedsrotcafnoisnapxeehtesU
.sCOLStnelaviuqeenimretedot]4[senoJ

stnioPerutaeF srepaCybdepolevedsrotcafnoisnapxeehtesU
.sCOLStnelaviuqeenimretedotsenoJ

14 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Engineering Technology

set of COCOMO II multipliers corresponding to COCOMO
81 project ratings.

Some implementations of COCOMO II, such as the USC
COCOMO II package, provide slots for extra user-defined
cost drivers. The values in Figure 5 can be put into those slots
(if you do this, use an N rating in the normal COCOMO II
TOOL slot).

To learn more about the cost drivers and their ratings,
refer to the USC Web site (http://sunset.usc.edu/
COCOMOII) or several of the Center for Software
Engineering’s other publications [7, 8]. Because the goal of
this article is to present the Rosetta Stone, we did not think it
was necessary to go into the details of the model and an ex-
planation of its many parameters.

Experimental Accuracy
To assess the accuracy of the translations, the team used the
Rosetta Stone to convert 89 projects. These projects were
clustered subsets of the databases we used for model calibra-
tion. Clusters were domain-specific. We updated our esti-
mates using actuals whenever we could. We then used the
autocalibration feature of the USC COCOMO II package to
develop a constant for the effort equation, e.g., the A in the
equation Effort = A(size)P. Finally, we compared our esti-
mates to actuals and computed the relative error as a function
of the following cases.
• Using the Rosetta Stone with no adjustments.
• Using the Rosetta Stone with knowledge-base adjustments,

e.g., updating the estimate files with actuals when available.
• Using the Rosetta Stone with knowledge-base adjustments

and domain clustering, e.g., segmenting the data based on
organization or application area.
The results of these analyses, which are summarized in

Table 6, were extremely positive. They show that we can
achieve an acceptable degree of estimating accuracy when
using the Rosetta Stone to convert COCOMO 81 files to run
with the COCOMO II software cost model.

Summary and Conclusions
The Rosetta Stone was developed to provide its users with a
process and a tool to convert their original COCOMO 81 files
so that they can be used with the new COCOMO II estimat-
ing model. The Stone represents a starting point for such ef-
forts. It does not replace the need to understand either the
scope of the estimate or the changes that occurred as the

18OMOCOC
srevirD

IIOMOCOC
srevirD

srotcaFnoisrevnoC

YLER YLER .lautcaehtroemasehtetaR.enoN

ATAD ATAD .lautcaehtroemasehtetaR.enoN

XLPC XLPC .lautcaehtroemasehtetaR.enoN

EMIT EMIT .lautcaehtroemasehtetaR.enoN

ROTS ROTS .lautcaehtroemasehtetaR.enoN

TRIV LOVP .lautcaehtroemasehtetaR.enoN

NRUT .5elbaTniseulavesU

PACA PACA .lautcaehtroemasehtetaR.enoN

PACP PACP .lautcaehtroemasehtetaR.enoN

PXEV PXEP .lautcaehtroemasehtetaR.enoN

PXEA PXEA .lautcaehtroemasehtetaR.enoN

PXEL XETL .lautcaehtroemasehtetaR.enoN

LOOT LOOT .5elbaTniseulavesU

PDOM TAMPtsujdA
.sgnittes

detarsiPDOMfI
.LVotTAMPtes,LroLV�

.LotTAMPtes,N�
.NotTAMPtes,HVroH�

DECS DECS .lautcaehtroemasehtetaR.enoN

ESUR .elbaliavafi,lautcaroNotteS

UCOD :edoMfI
.Lottes,cinagrO=

.Nottes,dehcatedimeS=
.Hottes,deddebmE=

NOCP .elbaliavafi,lautcaroNotteS

ETIS .elbaliavafi,lautcaroHotteS

Table 4. Cost drivers conversions.

Table 5. TURN and TOOL adjustments.

sesaC)rorrEevitaleR(ycaruccA

.detarbilacsaledomIIOMOCOCehtgnisU slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep86

detarbilacsaledomIIOMOCOCehtgnisU
.gniretsulcniamodrorepolevedgnisu

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep67

onhtiwenotSattesoRehtgnisU
.stnemtsujda

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep06

-egdelwonkhtiwenotSattesoRehtgnisU
.stnemtsujdaesab

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep86

-egdelwonkhtiwenotSattesoRehtgnisU
.gniretsulcniamoddnastnemtsujdaesab

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep47

Table 6. Estimate accuracy analysis results.

gnitaR18OMOCOC LV L N H HV

:reilpitluMIIOMOCOC NRUT 00.1 51.1 32.1 23.1

:reilpitluMIIOMOCOC LOOT 42.1 01.1 00.1

CROSSTALK The Journal of Defense Software Engineering 15February 1999

project unfolded. Rather, the Stone takes
these considerations into account as you
update its knowledge base with actuals.

The value of the Rosetta Stone was
demonstrated convincingly based on an
accuracy analysis of an 89-project data-
base. As expected, the accuracy increased
as we adjusted the estimates using
actuals and looked at results based on
domain segmentations. We are encour-
aged by the results. We plan to continue
our efforts to provide structure and
support for such conversion efforts. ◆

References
1. Boehm, B., Software Engineering Eco-

nomics, Prentice-Hall, Englewood Cliffs,
N.J., 1981.

2. Park, R., “Software Size Measurement:
A Framework for Counting Source
Statements,” CMU/SEI-92-TR-20,
Software Engineering Institute, Pitts-
burgh, Pa., 1992.

3. Reifer, D., personal correspondence,
1998.

4. Jones, C., Applied Software Measurement:
Assuring Productivity and Quality,
McGraw-Hill, New York, 1992.

5. Paulk, M., C. Weber, B. Curtis, and M.
Chrissis, The Capability Maturity Model:
Guidelines for Improving the Software
Process, Addison-Wesley, Reading, Mass.,
1995.

6. Boehm, B., et al., COCOMO II Model
Definition Manual, Version 1.4, Univer-
sity of Southern California, Los Ange-
les, Calif., 1997.

7. Boehm, B., et al., “The COCOMO
2.0 Software Cost Estimation Model,”
American Programmer, July 1996, pp.
2-17.

8. Clark, B. and D. Reifer, “The Rosetta
Stone: Making Your COCOMO Esti-
mates Work with COCOMO II,” Soft-
ware Technology Conference, Salt Lake
City, Utah, 1998.

About the Authors
Donald J. Reifer is a leading figure in
software engineering and management,
with over 30 years progressive experience
in government and industry. He has been

chief of the Ada Joint
Program Office, techni-
cal adviser to the Center
for Software, and direc-
tor of the Department of
Defense (DoD) Software
Reuse Initiative under an

Intergovernmental Personnel Act assign-
ment with the Defense Information Sys-
tems Agency. He is currently president of
RCI, a small consulting firm servicing
Fortune 500 companies, and he is a visit-
ing associate at USC, where he serves on
the COCOMO team. He has a bachelor’s
degree in electrical engineering, a master’s
degree in operations research, and a certifi-
cate in business management (master’s
equivalent). His many honors include the
Secretary of Defense’s medal for Outstand-
ing Public Service, the NASA Distin-
guished Service Medal, the Freiman
Award, and the Hughes Aircraft Fellow-
ship. He has over 100 publications, in-
cluding his popular IEEE Software Man-
agement Tutorial and a new Wiley book
entitled Practical Software Reuse.

Reifer Consultants, Inc.
P.O. Box 4046
Torrance, CA 90505
Voice: 310-530-4493
E-mail: d.reifer@ieee.org

Barry W. Boehm is
considered one of the
fathers of the field of
software engineering. He
is currently director of
the Center for Software
Engineering at USC,

and for many years directed key technol-
ogy offices in the DoD, TRW, and Rand
Corporation. His contributions to soft-
ware engineering include COCOMO, the
spiral model of the software process, the
Theory W approach to software manage-
ment and requirements determination,
and the TRW Software Productivity Sys-
tem and Quantum Leap advanced soft-
ware engineering environments. His cur-
rent software research interests include
process modeling, requirements engineer-
ing, architectures, metrics and cost mod-

els, engineering environments, and knowl-
edge-based engineering.

Boehm has a bachelor’s degree from
Harvard University and a master’s degree
and a doctorate from the University of
California at Los Angeles, all in math-
ematics. He has served on the board of
several scientific journals and has served
as chairman of numerous prominent
engineering society committees. He is the
recipient of many of software
engineering’s highest awards. He is an
American Institute of Aeronautics and
Astronautics Fellow, an Association for
Computing Machinery Fellow, an Insti-
tute of Electrical and Electronics Engi-
neers Fellow, and a member of the Na-
tional Academy of Engineering.

Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Voice: 213-740-8163
E-mail: boehm@sunset.usc.edu

Sunita Chulani is a
research assistant at the
Center for Software
Engineering at the
University of Southern
California. She is an
active participant on

the COCOMO II research team and is
working on a Bayesian approach to data
analysis and model calibration. She is also
working on a cost and quality model that
will be an extension to the existing
COCOMO II model. Her main interests
include software process improvement
with statistical process control, software
reliability modeling, risk assessment,
software cost estimation, and software
metrics. She has a bachelor’s degree in
computer engineering from Bombay
University and a master’s degree in com-
puter science from USC. She is currently
a doctoral candidate at the Center for
Software Engineering at USC.

Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Voice: 213-740-6470
E-mail: sdevnani@sunset.usc.edu

The Rosetta Stone: Making COCOMO 81 Estimates Work with COCOMO II

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

